Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Biol ; 21(1): 36, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2255691

ABSTRACT

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Subject(s)
COVID-19 , Testis , Viral Tropism , Animals , Humans , Male , Angiotensin II/metabolism , Chlorocebus aethiops , COVID-19/pathology , SARS-CoV-2 , Testis/immunology , Testis/virology , Vero Cells
2.
Braz J Microbiol ; 54(2): 769-777, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2254065

ABSTRACT

Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Artificial Intelligence , Nasopharynx , Machine Learning , Spectrum Analysis
3.
Transbound Emerg Dis ; 68(4): 2521-2530, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-922503

ABSTRACT

By analysing the evolution of the COVID-19 epidemic in the state of Minas Gerais, Brazil, we showed the importance of considering the sub-notification not only of deaths but also of infected cases. It was shown that the largely used criteria of a historical all-deaths baseline are not approachable in this case, where most of the deaths are associated with causes that should decrease due to social distancing and reduction of economic activities. A quite simple and intuitive model based on the Gompertz function was applied to estimate excess deaths and excess of infected cases. It fits well the data and predicts the evolution of the epidemic adequately. Based on these analyses, an excess of 21.638 deaths and 557.216 infected cases is predicted until the end of 2020, with an upper bound of the case fatality rate of around 2.4% and a prevalence of 2.6%. The geographical distribution of cases and deaths and its ethnic correlation are also presented. This study points out the necessity of governmental and private organizations working together to improve public awareness and stimulate social distancing to curb the viral infection, especially in critical places with high poverty.


Subject(s)
COVID-19 , Animals , Brazil/epidemiology , COVID-19/epidemiology , Epidemics , Prevalence , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL